The Architecture of Idiotypic Networks: Percolation and Scaling Behaviour

نویسندگان

  • Markus Brede
  • Ulrich Behn
چکیده

We investigate a model where idiotypes (characterizing B-lymphocytes and antibodies of an immune system) and anti-idiotypes are represented by complementary bitstrings of a given length d allowing for a number of mismatches (matching rules). In this model, the vertices of the hypercube in dimension d represent the potential repertoire of idiotypes. A random set of (with probability p) occupied vertices corresponds to the expressed repertoire of idiotypes at a given moment. Vertices of this set linked by the above matching rules build random clusters. We give a structural and statistical characterization of these clusters – or in other words – of the architecture of the idiotypic network. Increasing the probability p one finds at a critical p a percolation transition where for the first time a large connected graph occures with probability one. Increasing p further, there is a second transition above which the repertoire is complete in the sense that any newly introduced idiotype finds a complementary anti-idiotype. We introduce structural characteristics such as the mass distributions and the fragmentation rate for random clusters, and determine the scaling behaviour of the cluster size distribution near the percolation transition, including finite size corrections. We find that slightly above the percolation transition the large connected cluster (the central part of the idiotypic network) consists typically of one highly connected part and a number of weakly connected constituents and coexists with a number of small, isolated clusters. This is in accordance with the picture of a central and a peripheral part of the idiotypic network and gives some support to idealized architectures of the central part used in recent dynamical mean field models. PACS numbers: 64.60.Ak, 05.10.Ln, 02.70.Lq, 87.18.-h Typeset using REVTEX

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE SCALING LAW FOR THE DISCRETE KINETIC GROWTH PERCOLATION MODEL

The Scaling Law for the Discrete Kinetic Growth Percolation Model The critical exponent of the total number of finite clusters α is calculated directly without using scaling hypothesis both below and above the percolation threshold pc based on a kinetic growth percolation model in two and three dimensions. Simultaneously, we can calculate other critical exponents β and γ, and show that the scal...

متن کامل

Water Flooding Performance Evaluation Using Percolation Theory

Water flooding is a well-known secondary mechanism for improving oil recovery. Conventional approach to evaluate the performance of a water flooding process (e.g. breakthrough and post breakthrough behavior) is to establish a reliable geological reservoir model, upscale it, and then perform flow simulations. To evaluate the uncertainty in the breakthrough time or post breakthrough behavior, thi...

متن کامل

Localized memories in idiotypic networks.

The present paper investigates conditions under which immunological memory can be maintained by stimulatory idiotypic network interactions. The paper was motivated by the work of (De Boer & Hogeweg, 1989b, Bull. math. Biol. 51, 381-408.) which claimed that idiotypic memory is not possible because of percolation within the network. Here we reinvestigate the issue of percolation using both the pr...

متن کامل

Organization and evolution of synthetic idiotypic networks.

We introduce a class of weighted graphs whose properties are meant to mimic the topological features of idiotypic networks, namely, the interaction networks involving the B core of the immune system. Each node is endowed with a bit string representing the idiotypic specificity of the corresponding B cell, and the proper distance between any couple of bit strings provides the coupling strength b...

متن کامل

0 Percolation and conduction in restricted geometries

The finite-size scaling behaviour for percolation and conduction is studied in two-dimensional triangular-shaped random resistor networks at the percolation threshold. The numerical simulations are performed using an efficient star-triangle algorithm. The percolation exponents, linked to the critical behaviour at corners, are in good agreement with the conformal results. The conductivity expone...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008